

ParetoFlow: Guided Flows in Multi-Objective Optimization

Ye Yuan ^{*1, 2}, Can (Sam) Chen ^{*†1, 2}, Christopher Pal^{‡2, 3, 4}, Xue Liu^{‡1, 2}

*Equal contribution with random order; [†]Tech Lead: <u>can.chen@mila.quebec</u>; [‡]Equal senior contribution with random order

Problem Background

- Design objects with specific desired properties.
 - For example: design a neural network architecture to minimize the test loss on a classification task.
- Previous research primarily focuses on single-objective optimization, which fails to capture real-world complexities:
 - For example: design a neural network architecture that demands both low loss and minimal parameter counts.
- Offline multi-objective optimization (MOO): leveraging an offline dataset of designs and their associated labels to minimize multiple objectives simultaneously.

Problem Formulation

- Find $x^* \in \mathcal{X}$ such that there is no $x \in \mathcal{X}$ with $f(x) \prec f(x^*)$, where $f : \mathcal{X} \to \mathbb{R}^m$ is a vector of m objective functions, and \prec denotes Pareto dominance.
- A solution x is said to *Pareto dominate* another solution x^* (denoted as $f(x) \prec f(x^*)$) if:

 $\forall i \in \{1, \dots, m\}, \quad f_i(\boldsymbol{x}) \leq f_i(\boldsymbol{x}^*)$ and $\exists j \in \{1, \dots, m\}$ such that $f_j(\boldsymbol{x}) < f_j(\boldsymbol{x}^*)$.

A solution *x*^{*} is Pareto optimal if there is no other solution *x* ∈ X that Pareto dominates *x*^{*}. The set of all Pareto optimal solutions constitutes the *Pareto set* (*PS*). The corresponding set of objective vectors, defined as {*f*(*x*) | *x* ∈ *PS*}, is known as the *Pareto front*.

Flow Matching

- A conditional probability p_t(x | x₁), t ∈ [0,1], evolving from an initial distribution p₀(x | x₁) = q(x) to an approximate Dirac delta function p₁(x | x₁) ≈ δ(x x₁). This evolution is conditioned on a specific point x₁ from the distribution p_{data} and is driven by the conditional vector field u_t(x | x₁).
- The process begins by drawing initial noise x_0 from $q(x_0)$. This noise is then linearly interpolated with the data point x_1 :

 $\boldsymbol{x} \mid \boldsymbol{x}_1, t = (1-t) \cdot \boldsymbol{x}_0 + t \cdot \boldsymbol{x}_1, \quad \boldsymbol{x}_0 \sim q(\boldsymbol{x}_0).$

• Training this conditional flow matching model involves optimizing the loss function:

$$\mathbb{E}_{t,p_{\mathsf{data}}(\boldsymbol{x}_1),q(\boldsymbol{x}_0)} \| \hat{v}(\boldsymbol{x},t;\theta) - (\boldsymbol{x}_1 - \boldsymbol{x}_0) \|^2.$$

• We can then use the learned vector field $\hat{v}(\boldsymbol{x}, t; \theta)$ to generate samples by solving the neural ODE.

Multi-Objective Predictor Guidance

- Traditional predictor guidance only optimizes a single objective.
- We allow multi-objective guidance by decomposing it into individual weighted objective generation subproblems.

Multi-Objective Predictor Guidance

• Traditional predictor guidance in flow matching is derived as:

$$ilde{v}(oldsymbol{x}_t,t,y;oldsymbol{ heta}) = \hat{v}(oldsymbol{x}_t,t;oldsymbol{ heta}) + rac{1-t}{t}
abla_{oldsymbol{x}_t} \log p_{oldsymbol{eta}}(y \mid oldsymbol{x}_t,t),$$

where $p_{\beta}(y \mid \boldsymbol{x}_t, t)$ represents the predicted property distribution.

• We optimize multiple properties $[f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x})]$ simultaneously by defining a weight vector $\boldsymbol{\omega} = [\omega_1, \omega_2, \dots, \omega_m]$, where each $\omega_i > 0$ and $\sum_{i=1}^m \omega_i = 1$. Then the weighted property prediction is written as:

$$\widehat{f}_{oldsymbol{\omega}}(oldsymbol{x}_t;oldsymbol{eta}) = \sum_{i=1}^m -\widehat{f}_i(\widehat{oldsymbol{x}}_1(oldsymbol{x}_t);oldsymbol{eta}_i)\omega_i,$$

where \hat{f}_i predicts the *i*th objective for \boldsymbol{x}_t , trained using only \boldsymbol{x}_1 data, and the negative sign indicates minimization.

Multi-Objective Predictor Guidance

• We formulate the weighted distribution as:

 $p_{oldsymbol{eta}}(y \mid oldsymbol{\hat{x}}_1(oldsymbol{x}_t), oldsymbol{\omega}) = e^{\gamma \widehat{f}_{oldsymbol{\omega}}(oldsymbol{x}_t; oldsymbol{eta})}/Z,$

where γ is a scaling factor and Z is the normalization constant.

• Similar to the single-objective guidance, we then have:

$$ilde{v}(oldsymbol{x}_t,t,y;oldsymbol{ heta}) = \hat{v}(oldsymbol{x}_t,t;oldsymbol{ heta}) + \gamma rac{1-t}{t}
abla_{oldsymbol{x}_t} \hat{f}_{oldsymbol{\omega}}(oldsymbol{x}_t;oldsymbol{eta}).$$

• For the sample \boldsymbol{x}_t^i at time step t, we advance to the next time step:

$$\hat{oldsymbol{x}}_{s}^{i} = oldsymbol{x}_{t}^{i} + \widetilde{v}(oldsymbol{x}_{t}^{i}, t, y; oldsymbol{ heta}) \Delta t + g \sqrt{\Delta t} \epsilon,$$

where $s = t + \Delta t$ indicates the next time step, g = 0.1 denotes the noise factor, and ϵ is a standard Gaussian noise term. By sampling different ϵ , we could obtain O offsprings at each time step.

School of Computer Science

Neighboring Evolution

- Weighted distributions with similar weight vectors are likely to produce similar samples. For a distribution associated with ωⁱ, its neighbors are identified as the *K* distributions whose weight vectors have the smallest angular distances to ωⁱ.
- Given that there are *K* neighboring samples for 0.4 sample *i* and the *O* offsprings we obtained before, this result in a set: *X_i* = {*x̂_s^{j,o}* | *j* ∈ *N*(*i*), *o* ∈ {1, 2, · · · , *O*}}. 0.2
- We Update the current sample xⁱ_t using the neighboring set X_i:

$$oldsymbol{x}_{s}^{i} = rg\max_{\hat{oldsymbol{x}}_{s}^{j,o}\inoldsymbol{X}_{i}^{l}} f_{oldsymbol{\omega}^{i}}(\hat{oldsymbol{x}}_{s}^{j,o};oldsymbol{eta}).$$

Experiment: Tasks

- **Synthetic Function (Synthetic):** encompasses several subtasks involving popular functions with 2-3 objectives, aiming to identify the Pareto Set with offline designs;
- **Multi-Objective Neural Architecture Search (MO-NAS):** consists of tasks searching for a neural architecture that optimizes multiple metrics, such as latency and parameters count;
- **Multi-Objective Reinforcement Learning (MORL):** involves finding a control policy for a robot to maximize speed and energy efficiency or objectives related to running and jumping;
- Scientific Design (Sci-Design): includes tasks that concentrate on molecule or protein discovery to achieve certain desired properties.
- **Real-World Applications (RE):** encompasses a variety of practical optimization challenges, including four-bar truss and pressure vessel design. The MOPortfolio task, which focuses on optimizing expected returns and variance of returns is also included here.

Experiment: Evaluation Metrics Hypervolume (HV)

The HV metric quantifies the size of the objective space that is dominated by the candidate set *B* and bounded by a reference point *r* = (*r*¹, *r*², ..., *r^m*). Mathematically, the HV is defined as:

$$HV(\mathcal{B}) = \mathrm{vol}\left(igcup_{oldsymbol{y}\in\mathcal{B}}\prod_{i=1}^m [y^i,r^i]
ight),$$

- where ∏^m_{i=1}[yⁱ, rⁱ] represents an m-dimensional hyperrectangle (or box) spanning from the coordinates of y to the reference point r along each objective, and vol(·) denotes the Lebesgue measure of the union of these hyperrectangles.
- In simple terms, a larger hypervolume indicates that the solution set is both close to the Pareto front and well-distributed across the objective space.

School of Computer Science

Experiment Results

- ParetoFlow consistently achieves the highest ranks across all tasks, underscoring its effectiveness.
- Both DNN-based and generative modelingbased methods frequently outperform D(best), illustrating the strength of predictor and generative modeling.
- MO-NAS and Sci-Design tasks are predominantly discrete, with MO-NAS having a higher dimensionality. Generative modeling methods show reduced effectiveness on MO-NAS, which may stem from the difficulty in modeling high-dimensional discrete data.

Table 1: Average rank of different methods on each type of task in Off-MOO-Bench.

Methods	Synthetic	MO-NAS	MORL	Sci-Design	RE	All Tasks
D-Best	16.82 ± 6.28	14.42 ± 4.11	15.00 ± 4.00	13.75 ± 6.91	18.06 ± 3.93	16.02 ± 5.13
E2E	10.91 ± 8.20	6.05 ± 3.32	12.50 ± 1.50	9.75 ± 4.97	9.69 ± 5.65	8.73 ± 5.88
E2E + GradNorm	12.64 ± 6.68	13.42 ± 5.54	8.50 ± 0.50	13.50 ± 5.12	14.19 ± 5.87	13.31 ± 5.87
E2E + PcGrad	9.45 ± 6.37	6.42 ± 3.18	16.50 ± 2.50	14.00 ± 3.16	10.88 ± 6.17	9.40 ± 5.70
MH	11.55 ± 7.19	$\underline{5.26} \pm \underline{3.93}$	12.00 ± 4.00	12.50 ± 3.28	10.00 ± 5.67	8.87 ± 6.00
MH + GradNorm	10.45 ± 6.21	16.42 ± 4.84	18.00 ± 2.00	14.75 ± 4.44	17.00 ± 4.72	15.27 ± 5.64
MH + PcGrad	11.45 ± 4.58	6.84 ± 2.83	18.50 ± 0.50	13.50 ± 5.41	11.06 ± 6.24	10.08 ± 5.46
MM	$\underline{4.91} \pm \underline{4.17}$	6.74 ± 3.81	16.50 ± 1.50	6.75 ± 4.32	6.69 ± 3.46	$\underline{6.71} \pm \underline{4.31}$
MM + COMs	13.00 ± 3.86	9.53 ± 4.42	12.50 ± 2.50	12.25 ± 6.83	14.62 ± 4.75	12.15 ± 5.06
MM + RoMA	13.27 ± 7.53	8.21 ± 5.75	10.00 ± 3.00	12.00 ± 2.45	10.25 ± 5.14	10.27 ± 6.06
MM + IOM	6.91 ± 3.78	5.37 ± 3.60	6.50 ± 0.50	10.75 ± 1.92	7.25 ± 4.02	6.73 ± 3.88
MM + ICT	14.45 ± 5.77	8.53 ± 3.12	9.50 ± 3.50	12.50 ± 7.12	11.75 ± 6.54	11.12 ± 5.77
MM + Tri-Mentor	11.00 ± 5.89	9.05 ± 5.71	10.50 ± 1.50	13.00 ± 3.54	10.50 ± 5.82	10.27 ± 5.65
MOEA/D + MM	10.55 ± 4.83	12.58 ± 5.02	11.00 ± 1.00	10.75 ± 6.87	12.12 ± 6.62	11.81 ± 5.66
MOBO	10.91 ± 4.42	14.74 ± 3.82	17.00 ± 0.00	8.25 ± 6.61	11.00 ± 5.79	12.37 ± 5.32
MOBO-qParEGO	13.36 ± 3.98	16.63 ± 3.77	21.00 ± 0.00	12.75 ± 8.04	17.69 ± 4.55	16.13 ± 4.91
MOBO-JES	17.27 ± 3.11	22.00 ± 0.00	21.00 ± 0.00	18.75 ± 5.63	13.62 ± 5.19	18.13 ± 5.00
PROUD	8.55 ± 6.33	14.53 ± 4.43	$\underline{2.50} \pm \underline{0.50}$	6.25 ± 3.49	5.75 ± 5.02	9.46 ± 6.39
LaMBO-2	10.18 ± 6.55	14.37 ± 4.66	3.00 ± 1.00	5.00 ± 1.22	5.00 ± 4.72	9.44 ± 6.49
CorrVAE	11.73 ± 6.14	17.74 ± 2.95	4.50 ± 0.50	8.00 ± 4.18	9.56 ± 6.00	12.69 ± 6.35
MOGFN	10.55 ± 6.04	15.95 ± 3.98	3.50 ± 1.50	5.50 ± 4.50	5.88 ± 4.97	10.42 ± 6.63
ParetoFlow (ours)	$\textbf{4.00} \pm \textbf{3.88}$	$\textbf{3.47} \pm \textbf{4.26}$	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{2.75} \pm \textbf{1.48}$	$\textbf{2.44} \pm \textbf{3.45}$	$\textbf{3.12} \pm \textbf{3.77}$

Conclusion

- In this work, we apply flow matching to offline multi-objective optimization, introducing ParetoFlow.
- Our multi-objective predictor guidance module employs a uniform weight vector for each sample generation, guiding samples to approximate the Pareto-front.
- Additionally, our neighboring evolution module enhances knowledge sharing between neighboring distributions.
- Experiments across various benchmarks confirm the effectiveness of our approach.

Thanks for your attention!

Paper

Code

